Trending...
- City of Tacoma Secures Over $4 Million in Transportation Improvement Board Grants
- TBM Council Appoints Four Distinguished Leaders to Board of Directors
- Spokane: 2026 Point-In-Time Count Set for Mid-January, Volunteers Needed
SEATTLE, July 10, 2024 ~ Seattle-based biotech company, Orlance, Inc., has recently been granted a Phase I Small Business Innovation Research (SBIR) grant from the National Institutes of Health (NIH). The grant, worth $300,000 per year for two years, will be used to develop and optimize RNA vaccine formulations using Orlance's needle-free MACH-1™ platform.
The MACH-1 platform aims to enhance the safety, stability, and efficacy of RNA vaccines for infectious diseases such as influenza and Covid-19, as well as cancer immunotherapy applications. This technology represents a significant advancement in RNA vaccine delivery compared to traditional methods.
Unlike traditional lipid nanoparticle (LNP) RNA vaccine formulations that require ultra-cold storage and have been associated with rare adverse events like myocarditis, the MACH-1 platform utilizes dry, stable RNA-coated gold microparticles. These microparticles are propelled directly into the epidermis using a burst of pressurized gas. Once they penetrate the skin's outermost layer, they are taken up by immune cells that reside there.
More on Washingtoner
This needle-free and painless delivery system not only ensures better stability at ambient temperatures but also provides significant supply chain advantages in both developed and low-resource settings. Additionally, it can significantly improve patient comfort and compliance associated with discomfort and fear of needle-based injections.
The SBIR-funded project, titled "Gene Gun-delivered RNA vaccines," will be led by Orlance Principal Investigators Hannah Frizzell, PhD and Kenneth Bagley, PhD. The team aims to optimize RNA formulations for MACH-1 gene gun delivery that maximize loading, maintain functional integrity, and ensure stability and immunogenicity. They will also compare the effectiveness of MACH-1 delivered RNA vaccines against traditional LNP/RNA vaccines in inducing immune responses in preclinical models.
Preliminary studies have shown promising results with MACH-1 delivered RNA vaccines achieving comparable immunogenicity to LNP/RNA vaccines with significantly lower doses. Orlance co-founder and CEO, Kristyn Aalto, explains that while mRNA vaccines have shown great potential in recent years, there is still significant work to be done to improve their utility and global health impact.
More on Washingtoner
The grant will enable Orlance to conduct crucial preclinical studies and pave the way for subsequent phases of development, ultimately leading to clinical trials. Aalto also mentions that Orlance already has a well-developed MACH-1 DNA vaccine candidate portfolio and offering both DNA and RNA vaccine options allows them to provide ideal solutions for specific indications.
Founded in 2016 as a spin-out from the University of Washington (UW), Orlance is focused on developing next-generation MACH-1 vaccines and cancer immunotherapies. With $13M in SBIR funding awarded to date, the company has made significant progress towards readiness for initial regulatory filings in 2024. They plan to initiate Phase I clinical trials for their lead infectious disease asset in 2025 and are actively partnering with other vaccine developers to develop MACH-1 vaccine and immunotherapy candidates across multiple indications.
Orlance's MACH-1 platform has the potential to revolutionize RNA vaccine delivery, making it safer, more stable, and more effective. With the support of NIH's SBIR grant, Orlance is one step closer to achieving their goal of improving global health through innovative genetic vaccines.
The MACH-1 platform aims to enhance the safety, stability, and efficacy of RNA vaccines for infectious diseases such as influenza and Covid-19, as well as cancer immunotherapy applications. This technology represents a significant advancement in RNA vaccine delivery compared to traditional methods.
Unlike traditional lipid nanoparticle (LNP) RNA vaccine formulations that require ultra-cold storage and have been associated with rare adverse events like myocarditis, the MACH-1 platform utilizes dry, stable RNA-coated gold microparticles. These microparticles are propelled directly into the epidermis using a burst of pressurized gas. Once they penetrate the skin's outermost layer, they are taken up by immune cells that reside there.
More on Washingtoner
- Spokane: Male In Custody After Domestic Violence Court Order Service Results In Emergent Entry Into A Residence; Multiple Firearms Recovered
- Sergio C. Flores Appointed Tacoma Municipal Court Judge
- Tacoma: Statement from Mayor Anders Ibsen Regarding Recent ICE Activity
- Premium Bail Bonds Proudly Sponsors BOFAB BBQ Team at the 2026 Lakeland Pigfest
- UK Financial Ltd Receives Recognition In Platinum Crypto Academy's "Cryptonaire Weekly"
This needle-free and painless delivery system not only ensures better stability at ambient temperatures but also provides significant supply chain advantages in both developed and low-resource settings. Additionally, it can significantly improve patient comfort and compliance associated with discomfort and fear of needle-based injections.
The SBIR-funded project, titled "Gene Gun-delivered RNA vaccines," will be led by Orlance Principal Investigators Hannah Frizzell, PhD and Kenneth Bagley, PhD. The team aims to optimize RNA formulations for MACH-1 gene gun delivery that maximize loading, maintain functional integrity, and ensure stability and immunogenicity. They will also compare the effectiveness of MACH-1 delivered RNA vaccines against traditional LNP/RNA vaccines in inducing immune responses in preclinical models.
Preliminary studies have shown promising results with MACH-1 delivered RNA vaccines achieving comparable immunogenicity to LNP/RNA vaccines with significantly lower doses. Orlance co-founder and CEO, Kristyn Aalto, explains that while mRNA vaccines have shown great potential in recent years, there is still significant work to be done to improve their utility and global health impact.
More on Washingtoner
- P-Wave Press Announces Pushing the Wave 2024 by L.A. Davenport
- Preston Dermatology & Skin Surgery Center Wins Gold and Bronze in Prestigious Annual DIAMOND Awards
- David Boland, Inc. Awarded $54.3M Construction Contract by U.S. Army Corps of Engineers, Savannah District
- "Phinge Unveil™" Coming to Las Vegas to Showcase Netverse Patented Verified App-less Platform, AI & Modular Hardware Including Developer Conferences
- Tacoma: City Offers Virtual Workshop Series for Small Businesses on AI and Cybersecurity
The grant will enable Orlance to conduct crucial preclinical studies and pave the way for subsequent phases of development, ultimately leading to clinical trials. Aalto also mentions that Orlance already has a well-developed MACH-1 DNA vaccine candidate portfolio and offering both DNA and RNA vaccine options allows them to provide ideal solutions for specific indications.
Founded in 2016 as a spin-out from the University of Washington (UW), Orlance is focused on developing next-generation MACH-1 vaccines and cancer immunotherapies. With $13M in SBIR funding awarded to date, the company has made significant progress towards readiness for initial regulatory filings in 2024. They plan to initiate Phase I clinical trials for their lead infectious disease asset in 2025 and are actively partnering with other vaccine developers to develop MACH-1 vaccine and immunotherapy candidates across multiple indications.
Orlance's MACH-1 platform has the potential to revolutionize RNA vaccine delivery, making it safer, more stable, and more effective. With the support of NIH's SBIR grant, Orlance is one step closer to achieving their goal of improving global health through innovative genetic vaccines.
0 Comments
Latest on Washingtoner
- 30 Community Art Projects Funded by the Tacoma Arts Commission
- Dirty Heads, 311, Tropidelic, and The Movement to Headline Everwild Music Festival in 2026 with its largest lineup to date!
- The Stork Foundation Announces 2025 Year-End Impact and Grant Awards Amid Rising National Demand
- Stout Industrial Technology Appoints Paul Bonnett as Chief Executive Officer
- Revenue Optics Appoints Ljupco Icevski as Executive Advisor in Strategic Move to Accelerate Commercial Development
- Waarom brand mentions in ChatGPT steeds belangrijker worden
- Tacoma: City Council Approves 0.1% Criminal Justice Sales & Use Tax to Enhance Community Safety and Support Vital Services
- Tacoma: District 5 Council Member Joe Bushnell to Serve as Deputy Mayor in 2026
- City of Tacoma Secures Over $4 Million in Transportation Improvement Board Grants
- Sandesh Sadalge Sworn in as District 4 Tacoma City Council Member for First Full Term
- Tacoma: District 2 Council Member Sarah Rumbaugh Begins Second Term
- Latasha Palmer Begins Serving as Tacoma City Council Member, At-Large Position 6
- Mayor Anders Ibsen Sworn in During First Tacoma City Council Meeting of 2026
- Yunishigawa Onsen's Annual "Kamakura Festival" will be held January 30 – March 1, 2026
- At Your Service Plumbing Named a 2025 Nextdoor Neighborhood Fave
- TBM Council Appoints Four Distinguished Leaders to Board of Directors
- Spokane: 2026 Point-In-Time Count Set for Mid-January, Volunteers Needed
- Sound absorbing wall art: When acoustics meet interior design
- Custom Home Builder Connecticut Valley Homes Wins 2025 Home of the Year from the Modular Home Builders Association
- Scoop Social Co. Partners with Air Canada to Celebrate New Direct Flights to Milan with Custom Italian Piaggio Ape Gelato Carts