Trending...
- Spokane Police Department and SPD Cadets Engage with the Logan Community to Discuss Crime Prevention in the Neighborhood
- Pinealage: the app that turns strangers into meditation companions — in crowdfunding phase
- Spokane: Flags to be Lowered for Trooper Killed in Line of Duty
SEATTLE, July 10, 2024 ~ Seattle-based biotech company, Orlance, Inc., has recently been granted a Phase I Small Business Innovation Research (SBIR) grant from the National Institutes of Health (NIH). The grant, worth $300,000 per year for two years, will be used to develop and optimize RNA vaccine formulations using Orlance's needle-free MACH-1™ platform.
The MACH-1 platform aims to enhance the safety, stability, and efficacy of RNA vaccines for infectious diseases such as influenza and Covid-19, as well as cancer immunotherapy applications. This technology represents a significant advancement in RNA vaccine delivery compared to traditional methods.
Unlike traditional lipid nanoparticle (LNP) RNA vaccine formulations that require ultra-cold storage and have been associated with rare adverse events like myocarditis, the MACH-1 platform utilizes dry, stable RNA-coated gold microparticles. These microparticles are propelled directly into the epidermis using a burst of pressurized gas. Once they penetrate the skin's outermost layer, they are taken up by immune cells that reside there.
More on Washingtoner
This needle-free and painless delivery system not only ensures better stability at ambient temperatures but also provides significant supply chain advantages in both developed and low-resource settings. Additionally, it can significantly improve patient comfort and compliance associated with discomfort and fear of needle-based injections.
The SBIR-funded project, titled "Gene Gun-delivered RNA vaccines," will be led by Orlance Principal Investigators Hannah Frizzell, PhD and Kenneth Bagley, PhD. The team aims to optimize RNA formulations for MACH-1 gene gun delivery that maximize loading, maintain functional integrity, and ensure stability and immunogenicity. They will also compare the effectiveness of MACH-1 delivered RNA vaccines against traditional LNP/RNA vaccines in inducing immune responses in preclinical models.
Preliminary studies have shown promising results with MACH-1 delivered RNA vaccines achieving comparable immunogenicity to LNP/RNA vaccines with significantly lower doses. Orlance co-founder and CEO, Kristyn Aalto, explains that while mRNA vaccines have shown great potential in recent years, there is still significant work to be done to improve their utility and global health impact.
More on Washingtoner
The grant will enable Orlance to conduct crucial preclinical studies and pave the way for subsequent phases of development, ultimately leading to clinical trials. Aalto also mentions that Orlance already has a well-developed MACH-1 DNA vaccine candidate portfolio and offering both DNA and RNA vaccine options allows them to provide ideal solutions for specific indications.
Founded in 2016 as a spin-out from the University of Washington (UW), Orlance is focused on developing next-generation MACH-1 vaccines and cancer immunotherapies. With $13M in SBIR funding awarded to date, the company has made significant progress towards readiness for initial regulatory filings in 2024. They plan to initiate Phase I clinical trials for their lead infectious disease asset in 2025 and are actively partnering with other vaccine developers to develop MACH-1 vaccine and immunotherapy candidates across multiple indications.
Orlance's MACH-1 platform has the potential to revolutionize RNA vaccine delivery, making it safer, more stable, and more effective. With the support of NIH's SBIR grant, Orlance is one step closer to achieving their goal of improving global health through innovative genetic vaccines.
The MACH-1 platform aims to enhance the safety, stability, and efficacy of RNA vaccines for infectious diseases such as influenza and Covid-19, as well as cancer immunotherapy applications. This technology represents a significant advancement in RNA vaccine delivery compared to traditional methods.
Unlike traditional lipid nanoparticle (LNP) RNA vaccine formulations that require ultra-cold storage and have been associated with rare adverse events like myocarditis, the MACH-1 platform utilizes dry, stable RNA-coated gold microparticles. These microparticles are propelled directly into the epidermis using a burst of pressurized gas. Once they penetrate the skin's outermost layer, they are taken up by immune cells that reside there.
More on Washingtoner
- A Well-Fed World, Youth Climate Save and PAN International Launch PHRESH: A Global Directory of Plant-Based Hunger Relief Organizations
- Spokane: Shoplifting Blitz Nets Multiple Arrests as SPD Works to Curb Retail Thefts; Emphasis Continues as Christmas Approaches
- Haven Treatment Center Licensing Delays by Washington State Impeding Mental Health Access
- Tacoma: Update in SR-509 Fatal Collision Investigation: Vehicle of Interest Impounded
- Sexual Assault Suspect That Fled Spokane Area, Arrested in Connecticut; Extradition to Washington State Pending
This needle-free and painless delivery system not only ensures better stability at ambient temperatures but also provides significant supply chain advantages in both developed and low-resource settings. Additionally, it can significantly improve patient comfort and compliance associated with discomfort and fear of needle-based injections.
The SBIR-funded project, titled "Gene Gun-delivered RNA vaccines," will be led by Orlance Principal Investigators Hannah Frizzell, PhD and Kenneth Bagley, PhD. The team aims to optimize RNA formulations for MACH-1 gene gun delivery that maximize loading, maintain functional integrity, and ensure stability and immunogenicity. They will also compare the effectiveness of MACH-1 delivered RNA vaccines against traditional LNP/RNA vaccines in inducing immune responses in preclinical models.
Preliminary studies have shown promising results with MACH-1 delivered RNA vaccines achieving comparable immunogenicity to LNP/RNA vaccines with significantly lower doses. Orlance co-founder and CEO, Kristyn Aalto, explains that while mRNA vaccines have shown great potential in recent years, there is still significant work to be done to improve their utility and global health impact.
More on Washingtoner
- Spokane Police Department and SPD Cadets Engage with the Logan Community to Discuss Crime Prevention in the Neighborhood
- Mauritania's Cissé Boide Selected as the 2025 Ambassador of the Year
- Guests Can Save 25 Percent Off Last Minute Bookings at KeysCaribbean's Village at Hawks Cay Villas
- Trump's Executive Order Rescheduling Cannabis: Accelerating M&A in a Multibillion-Dollar Industry
- Genuine Hospitality, LLC Selected to Operate Hilton Garden Inn Birmingham SE / Liberty Park
The grant will enable Orlance to conduct crucial preclinical studies and pave the way for subsequent phases of development, ultimately leading to clinical trials. Aalto also mentions that Orlance already has a well-developed MACH-1 DNA vaccine candidate portfolio and offering both DNA and RNA vaccine options allows them to provide ideal solutions for specific indications.
Founded in 2016 as a spin-out from the University of Washington (UW), Orlance is focused on developing next-generation MACH-1 vaccines and cancer immunotherapies. With $13M in SBIR funding awarded to date, the company has made significant progress towards readiness for initial regulatory filings in 2024. They plan to initiate Phase I clinical trials for their lead infectious disease asset in 2025 and are actively partnering with other vaccine developers to develop MACH-1 vaccine and immunotherapy candidates across multiple indications.
Orlance's MACH-1 platform has the potential to revolutionize RNA vaccine delivery, making it safer, more stable, and more effective. With the support of NIH's SBIR grant, Orlance is one step closer to achieving their goal of improving global health through innovative genetic vaccines.
0 Comments
Latest on Washingtoner
- Pinealage: the app that turns strangers into meditation companions — in crowdfunding phase
- Proform Builds Completes Two Luxury Seattle Waterfront Renovation Projects
- "Micro-Studio": Why San Diegans are Swapping Crowded Gyms for Private, One-on-One Training at Sweat Society
- City of Spokane Seeks Applicants for Park Board
- South Spokane Standoff Ends Peacefully After Suspect Surrenders to Officers
- Beycome Closes $2.5M Seed Round Led by InsurTech Fund
- City of Vancouver Delaying Haven Treatment Center Facility's Certificate of Occupancy
- City of Spokane, Spokane County, Spokane Regional Emergency Communications Approve Interlocal Agreement to Support Safe, Coordinated Transition of Emergency Communication Services
- Tru by Hilton Columbia South Opens to Guests
- Christy Sports donates $56K in new gear to SOS Outreach to help kids hit the slopes
- "BigPirate" Sets Sail: A New Narrative-Driven Social Casino Adventure
- Phinge CEO Ranked #1 Globally by Crunchbase for the Last Week, Will Be in Las Vegas Jan. 4-9, the Week of CES to Discuss Netverse & IPO Coming in 2026
- Plainsight Announces Jonathan Simkins as New CEO, Succeeding Kit Merker
- Women's Everyday Safety Is Changing - The Blue Luna Shows How
- Microgaming Unveils Red Papaya: A New Studio Delivering Cutting-Edge, Feature-Rich Slots
- RollCraft Launches Pre-Roll Automation Machines for Producers Scaling Production in 2026
- Spokane: Simple Police Contact for a Civil Bike Infraction Ends in Arrest After Suspect Flees from Officers; Stolen Property Recovered After Suspect is Taken into Custody
- 5-Star Duncan Injury Group Expands Personal Injury Representation to Arizona
- The End of "Influencer" Gambling: Bonusetu Analyzes Finland's Strict New Casino Marketing Laws
- AI-Driven Cybersecurity Leader Gains Industry Recognition, Secures $6M Institutional Investment, Builds Momentum Toward $16M Annual Run-Rate Revenue