Trending...
- ANTOANETTA Partners With Zestacor Digital Marketing to Expand Online Presence for Handcrafted Luxury Jewelry
- FrostSkin Launches Kickstarter Campaign for Patent-Pending Instant-Chill Water Purification Bottle
- CareerWork$® Appoints Latoya Edmond as Executive Director
SEATTLE--(BUSINESS WIRE)--NanoString Technologies, Inc. (NASDAQ: NSTG), a leading provider of life science tools for discovery and translational research, today announced that two peer-reviewed publications using the GeoMx® Digital Spatial Profiler have been published in Nature and Nature Communications. These papers describe the use of Digital Spatial Profiling (DSP) technology to investigate SARS-CoV-2 infection and drive diagnostic, prevention, and treatment strategies.
The GeoMx DSP was used to profile lung tissue collected on autopsy from patients who had succumbed to COVID-19 infection. Researchers used the Cancer Transcriptome Atlas (CTA) plus a spike-in panel to detect additional lung genes and SARS-CoV-2 virus. In total, over 1,800 genes were interrogated as part of the study. This information enabled the researchers to connect bulk RNA sequencing data to the lung tissue's spatial architecture by looking at the distribution and transcriptional activity of cells, providing an important basis for understanding COVID-19 and lung pathology.
The first study, published in Nature Communications and led by Dr. Christopher Mason at Weill Cornell Medicine, was entitled "Shotgun transcriptome, spatial omics, and isothermal profiling of SARS-CoV-2 infection reveal unique host responses, viral diversification, and drug interactions." In this study, the GeoMx platform was used to molecularly characterize alveolar lung tissue. The team found spatially-restricted expression of the gene ACE2—which is a SARS-CoV-2 cellular target—and SARS-CoV-2 virus in some of the same regions. From the spatially-resolved expression profiles, they were able to infer the abundance of different immune and non-immune cells and found unique cellular distributions in COVID-19 patients compared to normal control lung samples.
"We were interested in characterizing the diversity of SARS-CoV-2 circulating in the population as well as the diversity of response to infection within a single patient. By using cell-type deconvolution, we were able to measure relative levels of 16 different cell populations from COVID-19 cases and controls using a single slide from each patient," said Dr. Mason, who serves on NanoString's Scientific Advisory Board and is a paid consultant for the company. "This deep molecular profiling helped us create a more complete picture of how the virus circulates in the body and how it elicits a variable response in infected individuals."
More on Washingtoner
The second study, "The spatial landscape of lung pathology during COVID-19 progression", was published in Nature and was led by Dr. Robert Schwartz, Dr. Alain Borczuk, and Dr. Olivier Elemento at Weill Cornell Medicine. The team found a difference in immune composition between individuals with early (<14 days) versus late (>30 days) mortality after admission to a hospital with COVID-19 symptoms. In "early" patients, immune cells known as neutrophils were seen at rates comparable to other acute respiratory distress syndromes (ARDS). However, with time it appears that a different pattern emerges; namely, increased abundance of macrophages, more inflammation, and wound healing (fibrosis) in patients with late mortality.
"Spatial profiling of the samples allowed us to separately characterize the transcriptional response in the airway, alveolar, and vascular compartments of the lung, and enabled us to see that the early period of severe COVID-19 disease is comprised of inflammatory responses to SARS-CoV-2," said Dr. Schwartz. "We also discovered late COVID-19 might be driven by pathogen-independent mechanisms of an immune response with aberrant resolution."
"These studies demonstrate the value of the GeoMx Digital Spatial Profiler in characterizing the tissue damage induced by SARS-CoV-2 infection," said Sarah Warren, Ph.D., Senior Director of Translational Science at NanoString. "By applying high-plex molecular profiling on the formalin fixed, paraffin embedded (FFPE) tissues that are safe to work with from COVID-19 autopsies, we can understand how the virus is inducing and altering immune response and tissue repair in the patients' lungs."
The GeoMx Digital Spatial Profiler enables researchers to rapidly and quantitatively characterize tissue morphology with a high-throughput, high-plex RNA and protein profiling system that preserves precious samples for future analyses. NanoString and its collaborators have presented DSP data in dozens of abstracts at major scientific meetings, and in more than 40 peer reviewed publications, demonstrating DSP's utility to address a wide range of biological questions in FFPE and frozen tissues. Interested parties can learn more about DSP by visiting https://www.nanostring.com/scientific-content/technology-overview/digital-spatial-profiling-technology.
More on Washingtoner
NanoString launched its Technology Access Program (TAP) for the recently announced single and subcellular Spatial Molecular Imager to complement the existing TAP program for GeoMx. Under the program, customers can submit tissue samples to NanoString to be analyzed using both spatial profiling platforms and receive a complete data package. Researchers interested in participating in NanoString's Technology Access Program should contact the company at TAP@nanostring.com.
About NanoString Technologies, Inc.
NanoString Technologies is a leading provider of life science tools for discovery and translational research. The company's nCounter® Analysis System is used in life sciences research and has been cited in more than 4,000 peer-reviewed publications. The nCounter Analysis System offers a cost-effective way to easily profile the expression of hundreds of genes, proteins, miRNAs, or copy number variations, simultaneously with high sensitivity and precision, facilitating a wide variety of basic research and translational medicine applications, including biomarker discovery and validation. The company's GeoMx® Digital Spatial Profiler enables highly-multiplexed spatial profiling of RNA and protein targets in a variety of sample types, including FFPE tissue sections.
For more information, please visit www.nanostring.com.
NanoString, NanoString Technologies, the NanoString logo, GeoMx, and nCounter are trademarks or registered trademarks of NanoString Technologies, Inc. in various jurisdictions.
The GeoMx DSP was used to profile lung tissue collected on autopsy from patients who had succumbed to COVID-19 infection. Researchers used the Cancer Transcriptome Atlas (CTA) plus a spike-in panel to detect additional lung genes and SARS-CoV-2 virus. In total, over 1,800 genes were interrogated as part of the study. This information enabled the researchers to connect bulk RNA sequencing data to the lung tissue's spatial architecture by looking at the distribution and transcriptional activity of cells, providing an important basis for understanding COVID-19 and lung pathology.
The first study, published in Nature Communications and led by Dr. Christopher Mason at Weill Cornell Medicine, was entitled "Shotgun transcriptome, spatial omics, and isothermal profiling of SARS-CoV-2 infection reveal unique host responses, viral diversification, and drug interactions." In this study, the GeoMx platform was used to molecularly characterize alveolar lung tissue. The team found spatially-restricted expression of the gene ACE2—which is a SARS-CoV-2 cellular target—and SARS-CoV-2 virus in some of the same regions. From the spatially-resolved expression profiles, they were able to infer the abundance of different immune and non-immune cells and found unique cellular distributions in COVID-19 patients compared to normal control lung samples.
"We were interested in characterizing the diversity of SARS-CoV-2 circulating in the population as well as the diversity of response to infection within a single patient. By using cell-type deconvolution, we were able to measure relative levels of 16 different cell populations from COVID-19 cases and controls using a single slide from each patient," said Dr. Mason, who serves on NanoString's Scientific Advisory Board and is a paid consultant for the company. "This deep molecular profiling helped us create a more complete picture of how the virus circulates in the body and how it elicits a variable response in infected individuals."
More on Washingtoner
- Spokane: Mayor Brown Appoints New Emergency Communications Director
- Jones Sign Rebrands as Jones to Reflect Growth, Innovation, and Expanded Capabilities
- Everett Chamber Hosts "Con Gusto: Women, Leadership & Culture" Featuring Lombardi's Owner Ker
- Greater Everett Chamber of Commerce Launches 2026 With "Brand Strategy 101" Lunch & Learn
- $1 Million Share Repurchase Signals Confidence as Off The Hook YS Scales a Tech-Driven Platform in the $57 Billion U.S. Marine Market
The second study, "The spatial landscape of lung pathology during COVID-19 progression", was published in Nature and was led by Dr. Robert Schwartz, Dr. Alain Borczuk, and Dr. Olivier Elemento at Weill Cornell Medicine. The team found a difference in immune composition between individuals with early (<14 days) versus late (>30 days) mortality after admission to a hospital with COVID-19 symptoms. In "early" patients, immune cells known as neutrophils were seen at rates comparable to other acute respiratory distress syndromes (ARDS). However, with time it appears that a different pattern emerges; namely, increased abundance of macrophages, more inflammation, and wound healing (fibrosis) in patients with late mortality.
"Spatial profiling of the samples allowed us to separately characterize the transcriptional response in the airway, alveolar, and vascular compartments of the lung, and enabled us to see that the early period of severe COVID-19 disease is comprised of inflammatory responses to SARS-CoV-2," said Dr. Schwartz. "We also discovered late COVID-19 might be driven by pathogen-independent mechanisms of an immune response with aberrant resolution."
"These studies demonstrate the value of the GeoMx Digital Spatial Profiler in characterizing the tissue damage induced by SARS-CoV-2 infection," said Sarah Warren, Ph.D., Senior Director of Translational Science at NanoString. "By applying high-plex molecular profiling on the formalin fixed, paraffin embedded (FFPE) tissues that are safe to work with from COVID-19 autopsies, we can understand how the virus is inducing and altering immune response and tissue repair in the patients' lungs."
The GeoMx Digital Spatial Profiler enables researchers to rapidly and quantitatively characterize tissue morphology with a high-throughput, high-plex RNA and protein profiling system that preserves precious samples for future analyses. NanoString and its collaborators have presented DSP data in dozens of abstracts at major scientific meetings, and in more than 40 peer reviewed publications, demonstrating DSP's utility to address a wide range of biological questions in FFPE and frozen tissues. Interested parties can learn more about DSP by visiting https://www.nanostring.com/scientific-content/technology-overview/digital-spatial-profiling-technology.
More on Washingtoner
- Trends Journal's Top Trends of 2026
- CollabWait to Launch Innovative Waitlist Management Platform for Behavioral Health Services
- Urban Bush Women Celebrates Bessie Award Nominations & Winter 2026 Touring
- Imagen Golf Launches "Precision Lessons" with Trackman iO in Newtown, PA
- New Report Reveals Surprising Trends in Illinois Airport Accidents
NanoString launched its Technology Access Program (TAP) for the recently announced single and subcellular Spatial Molecular Imager to complement the existing TAP program for GeoMx. Under the program, customers can submit tissue samples to NanoString to be analyzed using both spatial profiling platforms and receive a complete data package. Researchers interested in participating in NanoString's Technology Access Program should contact the company at TAP@nanostring.com.
About NanoString Technologies, Inc.
NanoString Technologies is a leading provider of life science tools for discovery and translational research. The company's nCounter® Analysis System is used in life sciences research and has been cited in more than 4,000 peer-reviewed publications. The nCounter Analysis System offers a cost-effective way to easily profile the expression of hundreds of genes, proteins, miRNAs, or copy number variations, simultaneously with high sensitivity and precision, facilitating a wide variety of basic research and translational medicine applications, including biomarker discovery and validation. The company's GeoMx® Digital Spatial Profiler enables highly-multiplexed spatial profiling of RNA and protein targets in a variety of sample types, including FFPE tissue sections.
For more information, please visit www.nanostring.com.
NanoString, NanoString Technologies, the NanoString logo, GeoMx, and nCounter are trademarks or registered trademarks of NanoString Technologies, Inc. in various jurisdictions.
0 Comments
Latest on Washingtoner
- Yunishigawa Onsen's Annual "Kamakura Festival" will be held January 30 – March 1, 2026
- At Your Service Plumbing Named a 2025 Nextdoor Neighborhood Fave
- TBM Council Appoints Four Distinguished Leaders to Board of Directors
- Spokane: 2026 Point-In-Time Count Set for Mid-January, Volunteers Needed
- Sound absorbing wall art: When acoustics meet interior design
- Custom Home Builder Connecticut Valley Homes Wins 2025 Home of the Year from the Modular Home Builders Association
- Scoop Social Co. Partners with Air Canada to Celebrate New Direct Flights to Milan with Custom Italian Piaggio Ape Gelato Carts
- Breakout Phase for Public Company: New Partnerships, Zero Debt, and $20 Million Growth Capital Position Company for 2026 Acceleration
- Japan's Patented "Hammock'n" Smartphone Band Targets Hand Fatigue From Long Phone Use
- Reditus Group Introduces A New Empirical Model for Early-Stage B2B Growth
- CCHR: Harvard Review Exposes Institutional Corruption in Global Mental Health
- Goatimus Launches Dynamic Context: AI Prompt Engineering Gets Smarter
- Global License Exclusive Secured for Emesyl OTC Nausea Relief, Expanding Multi-Product Growth Strategy for Caring Brands, Inc. (N A S D A Q: CABR)
- RNHA Affirms Support for President Trump as Nation Marks Historic Victory for Freedom
- American Laser Study Club Announces 2026 Kumar Patel Prize in Laser Surgery Recipients: Ann Bynum, DDS, and Boaz Man, DVM
- Lineus Medical Completes UK Registration for SafeBreak® Vascular
- Canyons & Chefs Announces Revamped Homepage
- $140 to $145 Million in 2026 Projected and Profiled in New BD Deep Research Report on its Position in $57 Billion US Marine Industry; N Y S E: OTH
- Really Cool Music Releases Its Fourth Single - "So Many Lost Years"